
Using Search-Based Test Generation to Discover Real
Faults in Guava

Hussein Almulla, Alireza Salahirad, Gregory Gay

University of South Carolina, Columbia, SC, USA,⋆⋆

[halmulla, alireza]@email.sc.edu, greg@greggay.com

Abstract. Testing costs can be reduced through automated unit test generation.
An important benchmark for such tools is their ability to detect real faults. Fault
databases, such as Defects4J, assist in this task. The Guava project—a collection
of Java libraries from Google—offers an opportunity to expand such databases
with additional complex faults. We have identified 11 faults in the Guava project,
added them to Defects4J, and assessed the ability of the EvoSuite framework to
detect these faults. Ultimately, EvoSuite was able to detect three faults. Analysis
of the remaining faults offers lessons in how to improve generation tools. We
offer these faults to the community to assist future benchmarking efforts.

Keywords: Search-based test generation, automated test generation, software faults

1 Introduction

With the growing complexity of software, the cost of testing has grown as well. Automa-
tion of tasks such as unit test creation can assist in controlling that cost. One promising
form of automated test generation is search-based generation. Given a measurable test-
ing goal, and a fitness function capable of guiding the search towards that goal, powerful
optimization algorithms can select test inputs able to meet that goal [3].

When testing, developers ultimately wish to detect faults. Therefore, to impact test-
ing practice, automated generation techniques must be effective at detecting the com-
plex faults that manifest in real-world software projects [7]. By offering examples of
such faults, fault databases—such as Defects4J [6]—allow us to benchmark generation
tools against realistic case examples. Importantly, Defects4J can be expanded to include
additional systems and example faults.

The Guava project 1 offers an excellent expansion opportunity. Guava is an open-
source set of core libraries for Java, developed by Google, that include collection types,
graph libraries, functional types, in-memory caching, and numerous other utilities. Guava
is an essential tool of modern development, and is one of the most used libraries [8].

Guava serves as an interesting benchmark subject for two reasons. First, much of its
functionality is, naturally, related to the creation and manipulation of complex objects.
Guava defines a variety of new data structures, and functionality related to those struc-
tures. Generation and initialization of complex input is an outstanding challenge area
⋆⋆ This work is supported by National Science Foundation grant CCF-1657299.

1
https://github.com/google/guava

https://github.com/google/guava


2

for automated generation [1]. Second, Guava is a mature project. Faults in Guava—
particularly recent faults—are unlikely to resemble the simple syntactic mistakes mod-
eled by mutations. Rather, we expect to see faults that require specific, difficult to trig-
ger, combinations of input and method calls. Generation tools that can detect such faults
are likely to be effective on other real-world projects. If not, then by studying these
faults, we may be able to learn lessons that will improve these tools.

We have identified 11 real faults in the Guava project, and added them to Defects4J.
We generated test suites using the EvoSuite framework [3], and assessed the ability of
these suites to detect nine of the faults2. Ultimately, EvoSuite is able to detect three of
the nine studied faults. Some of the issues preventing fault detection include the need for
specific input values, data types, or sequences of method calls—generally factors that
cannot be addressed through code coverage alone. We have made these faults available
to provide data and examples that could benefit future test generation research.

2 Study

In this study, we have extracted faults from the Guava project. We have generated tests
for the fixed version of each class using the EvoSuite framework [3], and applied those
tests to the faulty version in order to assess the efficacy of generated suites. In doing
so, we wish to answer the following research questions: (1) can EvoSuite detect the
extracted faults?, and (2), what factors prevented fault detection?

In order to answer these questions, we have performed the following experiment:
1. Extracted Faults: We have identified 11 real faults in the Guava project, and added

them to the Defects4J fault database (See Section 2.1).
2. Generated Test Cases: For nine of the faults, we generated 10 suites per fault

using the fixed version of each class-under-test (CUT). We repeat this process with
a two-minute and a ten-minute search budget per CUT (See Section 2.2).

3. Removed Non-Compiling Tests: Any tests that do not compile, or that return in-
consistent results, are automatically removed (See Section 2.2).

4. Assessed Fault-finding Efficacy: For each budget and fault, we measure the like-
lihood of fault detection. For each undetected fault, we examined the report and
source code to identify possible detection-preventing factors.

2.1 Fault Extraction

Defects4J is an extensible database of real faults extracted from Java projects [6]3. Cur-
rently, it consists of 395 faults from six projects. For each fault, Defects4J provides
access to the faulty and fixed versions of the code, developer-written test cases that
expose each fault, and a list of classes and lines of code modified to fix the fault.

We have added Guava to Defects4J. This consisted of developing build files that
work across project versions, extracting candidate faults using Guava’s version control
and issue tracking systems, ensuring that each candidate could be reliable reproduced,
and minimizing the ”patch” used to distinguish fixed and faulty classes.

2 Two faults were omitted from the case study as they require the use of JDK 7 (see Section 2).
3 Available from http://defects4j.org

http://defects4j.org


3

For inclusion in the final dataset, each fault is required to meet three properties.
First, the fault must be related to the source code. For each reported issue, we attempted
to identify a pair of code versions that differ only by the minimum changes required to
address the fault. The “fixed” version must be explicitly labeled as a fix to an issue, and
changes imposed by the fix must be to source code, not to other project artifacts such
as the build system. Second, the fault must be reproducible—at least one test must pass
on the fixed version and fail on the faulty version. Third, the fix to the fault must be
isolated from unrelated code changes such as refactorings.

One property of all Defects4J faults is that the commit message for the “fixed”
version reference a reported issue in the project’s tracking system (i.e., “fixes #2345”).
Fulfilling this property has not been a problem for the six existing projects, as the devel-
opers of those projects have used a standard commit message format. However, Guava
commits do not follow a standard format—many “fixes” do not reference a reported
issue. To maintain continuity with the other Defects4J projects, we restricted our search
to fixes that do make an explicit reference. Following this process, we extracted 11
faults from a pool of 63 candidate faults that reference an explicit issue. In the future,
we may allow commits without explicit references in order to mine additional faults.

One additional limiting factor is that particular Java Development Kit versions must
be installed and used to build certain versions of Guava. Due to language changes, JDK
7 must be used to build faults 10 and 11. Faults 1-9 can be built using JDK 8. Recently,
the decision was made to require that all new additions to Defects4J be compatible with
JDK 8. Faults 10 and 11 will still be made available, but will not be included in the core
Defects4J database or used in our case study.

The faults used in this study can be accessed by cloning the bug-mining branch
of https://github.com/Greg4cr/defects4j. Additional data about each fault
can be found at http://greggay.com/data/guava/guavafaults.csv, in-
cluding commit IDs, fault descriptions, and a list of triggering tests. Later, these faults
will be migrated into the master branch at http://defects4j.org. We plan to
add additional faults and improvements in the future.

2.2 Test Generation and Removal

EvoSuite applies a genetic algorithm in order to evolve test suites over several gener-
ations, forming a new population by retaining, mutating, and combining the strongest
solutions [7]. In this study, we used EvoSuite version 1.0.5 with a combination of three
fitness functions—Branch, Exception, and Method Coverage—a combination recently
found to be generally effective at detecting faults [5].

Tests are generated from the fixed version of the system and applied to the faulty
version in order to eliminate the oracle problem. In practice, this translates to a regres-
sion testing scenario. Given the potential difficulty in achieving coverage over Guava
classes, two search budgets were used—two and ten minutes, a typical and an extended
budget [4]. To control experiment cost, we deactivated assertion filtering—all possible
regression assertions are included. All other settings were kept at their default values.
As results may vary, we performed 10 trials for each fault and search budget.

Generation tools may generate flaky (unstable) tests [7]. For example, a test case
that makes assertions about the system time will only pass during generation. We auto-

https://github.com/Greg4cr/defects4j
http://greggay.com/data/guava/guavafaults.csv
http://defects4j.org


4

Fault Budget Fault Likelihood of Branch Coverage Suite Size Suite Length Number of
Detected Detection (Covered/Total Goals) Tests Removed

1 2 min X 0.00% 11.83% (22.60/191.00) 6.90 26.10 0.90
10 min X 0.00% 73.25% (139.90/191.00) 38.70 180.80 11.10

2 2 min X 0.00% 92.47% (82.30/89.00) 26.10 65.60 0.00
10 min X 0.00% 93.60% (83.30/89.00) 26.90 70.00 0.00

3 2 min ✓ 90.00% 96.64% (132.40/137.00) 65.90 114.90 0.00
10 min ✓ 90.00% 97.52% (133.60/137.00) 67.70 117.00 0.00

4 2 min ✓ 60.00% 67.56% (83.10/123.00) 91.40 270.40 1.20
10 min ✓ 100.00% 92.03% (113.20/123.00) 130.40 424.20 1.60

5 2 min X 0.00% 32.38% (13.60/42.00) 4.70 49.40 0.00
10 min X 0.00% 76.31% (30.70/40.20) 14.50 96.90 0.00

6 2 min X 0.00% 3.10% (30.90/1008.00) 3.00 11.60 0.00
10 min X 0.00% 3.10% (31.10/1008.00) 3.40 13.00 0.10

7 2 min X 0.00% 2.32% (23.30/1005.00) 3.40 20.50 0.00
10 min X 0.00% 1.91% (19.20/1005.00) 2.20 15.50 0.30

8 2 min ✓ 10.00% 21.51% (11.40/53.00) 7.30 35.10 0.00
10 min ✓ 60.00% 91.89% (48.70/53.00) 42.40 214.90 1.20

9 2 min X 0.00% 3.54% (5.60/158.00) 3.40 8.40 0.00
10 min X 0.00% 57.47% (90.80/158.00) 74.30 175.30 0.20

Table 1. Test generation results for each fault and search budget—likelihood of fault detection,
average achieved branch coverage (covered/total branches), average number of tests, average
suite length, and average number of tests removed.

matically remove flaky tests4. First, non-compiling test cases are removed. Then, each
test is executed on the fixed CUT five times. If results are inconsistent, the test case is
removed. On average, 0.92 tests are removed from each suite.

3 Results and Discussion

In Table 1, we list—for each search budget—whether EvoSuite was able to detect each
fault and, if so, the likelihood of detection (the proportion of suites that detected the
fault). We also list the average Branch Coverage attained over the ten trials, the average
number of tests in the generated suites, the average suite length (number of test steps),
and the average number of tests removed.

From Table 1, we can see the three of the nine faults were detected (Faults 3, 4, and
8). Of these, Fault 3 was detected the most reliably (90% likelihood for both budgets).
This fault, dealing with incorrect rounding5, is a classic example of the types of faults
that automated generation excels at. Branch Coverage drives the search towards the
affected code and towards differing output between versions.

Fault 46 was also detected reliably. The faulty version uses a non-standard ASCII
character in the toString() function for class Range. This is a relatively easy fault
to catch—any call to toString() with a valid Range object will result in differing output
between faulty and fixed versions. With the shorter search budget, EvoSuite is some-
what less likely to call the function and somewhat more likely to set up an invalid range.
However, the longer budget ensures that the fault is caught by all suites.

Fault 8 involves the computation of the intersection of RegularContiguousSet
objects when one is a singleton7. One of the changes made to fix the fault is a shift from

4 This process is documented in more detail in [7] and [4].
5
https://github.com/google/guava/commit/1b1163b7e2c121d4a5b25b8966714201551976c4

6
https://github.com/google/guava/commit/c6e21a35f3113a7a952a9615a0e92dcf1dd4bfb3

7
https://github.com/google/guava/commit/44a2592b04490ad26d2bc874f9dbd4c1146cc5de

https://github.com/google/guava/commit/1b1163b7e2c121d4a5b25b8966714201551976c4
https://github.com/google/guava/commit/c6e21a35f3113a7a952a9615a0e92dcf1dd4bfb3
https://github.com/google/guava/commit/44a2592b04490ad26d2bc874f9dbd4c1146cc5de


5

< in the return statement of the isEmpty() method to <=. Any test case where the
two compared variables are the same will now detect the fault. A longer search budget
increases the number of suites that detect the fault (10% to 30%), but this is still a clear
case of a fault that requires not just coverage, but picking specific input.

EvoSuite failed to detect the other six faults. Therefore, our next step was to examine
these faults to identify factors preventing detection. These factors include:
Specific Input Values are Required: As seen in Fault 8, it is not enough to simply
cover a line. At times, specific input values are required to trigger and detect a fault. In
the case of Fault 8, the generator is able to stumble on these inputs given enough time.
In other cases, such as with Fault 28, not enough context is offered to the generator.
Because of this fault, splitting a string with a zero-width regular expression pattern
would result in single-character strings on either end of the split being dropped. The fix
to the code changes a >= to a >, but unless input matching this particular corner case
is used, the fault will not be discovered.
Specific Data Types are Required for Input: Guava includes functionality for iter-
ating over lists that is intended to function regardless of the type of list used. Fault 99

illustrates the difficulty of verifying such functionality. Unlike sets, lists typically allow
duplicate elements. This is not universally true, however. Therefore, if a list type is used
that does not allow duplicates, then the affected code in Guava will throw an exception.
This is another case that coverage cannot handle, as coverage can be obtained using any
type of list. Detecting the fault requires choosing a specialized data type.
Inputs are Instances of Complex Data Types: Generating input for complex data
types is still an open challenge for automated generation [1]. If the generator cannot
produce and manipulate input of such types, it may not be able to cover code, reducing
the possibility of triggering faults. Fault 610 is one such example. This fault revolves
around the wrong cause of removal being listed for items in a cache. To discover this
fault, EvoSuite must generate and initialize an instance of the class LocalCache. In
addition, this class is a generic type, further complicating automated generation [2].
A Specific Series of Method Calls Must Be Generated: Each unit test consists of a
series of one or more calls to methods in the CUT. Rather than specific input, at times,
triggering a fault requires a specific sequence of calls. Fault 511 is one such example. In
this case, a long sequence of nested Futures.transform(...) calls on the same
object will indefinitely hang because a StackOverflowException is thrown and
swallowed. Detecting this fault requires not only input that triggers an exception, but a
sequence of transformation calls on that input.

Fault 112 offers a second example of this factor. MinMaxPriorityQueue fails
to remove the correct object after a sequence of multiple add and remove calls—
specifically, certain elements may be iterated more than once if elements are removed
during iteration. It would not be unusual to see a sequence of calls in a generated test
case. However, the example tests created by humans to reproduce this fault include

8
https://github.com/google/guava/commit/55524c66de8db4c2e44727b69421c7d0e4f30be0

9
https://github.com/google/guava/commit/1a1b97ee1f065d0bc52c91eeeb6407bfaa6cbea1

10
https://github.com/google/guava/commit/0a686a644ca5cefb9e7bf4a38b34bf4ede9e75aa

11
https://github.com/google/guava/commit/52b5ee640da780e0fd2502ec995436fcdc93e03e

12
https://github.com/google/guava/commit/2ef955163b3d43e7849c1929ef4e5d714b93da96

https://github.com/google/guava/commit/55524c66de8db4c2e44727b69421c7d0e4f30be0
https://github.com/google/guava/commit/1a1b97ee1f065d0bc52c91eeeb6407bfaa6cbea1
https://github.com/google/guava/commit/0a686a644ca5cefb9e7bf4a38b34bf4ede9e75aa
https://github.com/google/guava/commit/52b5ee640da780e0fd2502ec995436fcdc93e03e
https://github.com/google/guava/commit/2ef955163b3d43e7849c1929ef4e5d714b93da96


6

relatively long sequences of calls. The suite minimization and bloat control mechanisms
used to control suite size in automated generation are designed to avoid a long series of
calls that do not contribute to code coverage—actively discouraging the generation of
the very type of test cases that would detect this fault.

Many of these factors cannot be solved through increasing code coverage. Rather,
they require context from the project. Methods of gleaning that context, either through
seeding from existing test cases or data mining of project elements, may assist in im-
proving the efficacy of test generation.

4 Conclusion

We have identified 11 real faults in the Guava project, and added them to the Defects4J
fault database. To study the capabilities of modern test generation tools, we generated
test suites using the EvoSuite framework. Ultimately, EvoSuite is able to detect three of
the nine studied faults. Some of the issues preventing fault detection include the need for
specific input values, data types, or sequences of method calls—generally factors that
cannot be addressed through code coverage alone. We have made these faults available
to provide data and examples that could benefit future test generation research.

References

1. Feldt, R., Poulding, S.: Finding test data with specific properties via metaheuristic search. In:
2013 IEEE 24th International Symposium on Software Reliability Engineering (ISSRE). pp.
350–359 (Nov 2013)

2. Fraser, G., Arcuri, A.: Automated Test Generation for Java Generics, pp. 185–198. Springer
International Publishing, Cham (2014), http://dx.doi.org/10.1007/978-3-319-
03602-1 12

3. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated white-box test
generation really help software testers? In: Proceedings of the 2013 International Symposium
on Software Testing and Analysis. pp. 291–301. ISSTA, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2483760.2483774

4. Gay, G.: The fitness function for the job: Search-based generation of test suites that detect real
faults. In: Proceedings of the International Conference on Software Testing. ICST 2017, IEEE
(2017)

5. Gay, G.: Generating effective test suites by combining coverage criteria. In: Proceedings of
the Symposium on Search-Based Software Engineering. SSBSE 2017, Springer Verlag (2017)

6. Just, R., Jalali, D., Ernst, M.D.: Defects4J: A database of existing faults to enable controlled
testing studies for Java programs. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis. pp. 437–440. ISSTA 2014, ACM, New York, NY, USA (2014),
http://doi.acm.org/10.1145/2610384.2628055

7. Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A.: Do automatically
generated unit tests find real faults? an empirical study of effectiveness and challenges. In:
Proceedings of the 30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). ASE 2015, ACM, New York, NY, USA (2015)

8. Weiss, T.: We analyzed 30,000 GitHub projects - here are the top 100 libraries in Java,
JS and Ruby (2013), http://blog.takipi.com/we-analyzed-30000-github-
projects-here-are-the-top-100-libraries-in-java-js-and-ruby/

http://dx.doi.org/10.1007/978-3-319-03602-1_12
http://dx.doi.org/10.1007/978-3-319-03602-1_12
http://doi.acm.org/10.1145/2483760.2483774
http://doi.acm.org/10.1145/2610384.2628055
http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the-top-100-libraries-in-java-js-and-ruby/
http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the-top-100-libraries-in-java-js-and-ruby/

	Using Search-Based Test Generation to Discover Real Faults in Guava
	Introduction
	Study
	Fault Extraction
	Test Generation and Removal

	Results and Discussion
	Conclusion


